Главная Применение металлопроката и труб ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПОКРЫТИЙ И ЭКОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ МЕТАЛЛОВ.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПОКРЫТИЙ И ЭКОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ МЕТАЛЛОВ.

297

1. Цинковое покрытие

1.1. Цинковое покрытие является анодным по отношению к черным металлам и защищает сталь от коррозии электрохимически при температурах до 70°С, при более высоких температурах - механически.

Покрытие предотвращает контактную коррозию сталей при сопряжении с деталями из алюминия и его сплавов; обеспечивает свинчиваемость резьбовых деталей.

Цинк по сравнения с другими металлами, применяющимися в гальванотехнике, мало токсичен для человека. Потребность человеческого организма в цинке удовлетворяется пищей и питьевой водой. Токсические дозы солей цинка приводят к острому, но излечимому отравлению.

1.2. Для повышения коррозионной стойкости цинковое покрытие хроматируют и фосфатируют. Хроматирование 

одновременно улучшает декоративный вид покрытия. Хроматная пленка механически непрочная.

(Измененная редакция, Изм. № 2).

1.3. Цинковое хроматированное покрытие теряет свой декоративный вид при условии периодического механического воздействия: прикосновения инструмента, рук.

1.4. Без хроматирования и фосфатирования покрытие применяют для обеспечения электропроводности и при опрессовке пластмассами при температуре выше 100°С.

1.5. Электрохимическое цинкование вызывает потерю пластичности сталей вследствие наводороживания. Стали с пределом прочности выше 1380 МПа; (140 кг/мм2) цинкованию не подлежат.

1.7. Микротвердость покрытия, наносимого электрохимическим способом, в среднем, составляет 490-1180 МПа (50-120 кгс/мм2); удельное сопротивление при температуре 18°С составляет 5,75×10-8 Ом×м.

2. Кадмиевое покрытие

2.1. Кадмиевое покрытие является анодным и защищает сталь от коррозии в атмосфере и морской воде электрохимически; в пресной воде - механически.

(Измененная редакция, Изм. № 1).

Кадмий относится к наиболее опасным из всех металлических загрязнений продуктов, потребляемых человеком. Организм человека абсорбирует около 6% кадмия, поступившего с пищей, который практически не выводится из организма. Продолжительное поступление в организм кадмия вызывает тяжелые заболевания почек, а также костей. Продолжительное воздействие кадмия вызывает анемию и гипертонию. Токсичноасть кадмия снижается при одновременном поступлении в организм других металлов. Смягчающим эффектом обладают кобальт, селен, а также цинк и его хелаты.

1.6. Покрытие обладает прочным сцеплением с основным металлом, низким сопротивлением механическому истиранию и повышенной хрупкостью при температурах выше 250°С и ниже минус 70°С; матовое покрытие выдерживает гибку, развальцовку.

Покрытие обладает низкой химической стойкостью к воздействию продуктов, выделяющихся при старении органических материалов.

2.2. Для повышения коррозионной стойкости кадмиевое покрытие хроматируют и фосфатируют. Хроматирование одновременно улучшает декоративный вид покрытия. Хроматная пленка механически непрочная.

Скорость коррозии в промышленной атмосфере в 1,5-2 раза больше, чем у цинкового покрытия.

2.3. Без хроматирования и фосфатирования покрытие применяют для обеспечения электропроводности, при опрессовке пластмассами при температуре выше 100°С.

2.4. Покрытие не рекомендуется применять для деталей, работающих в атмосфере промышленных районов; в контакте с топливом, содержащим сернистые соединения; в атмосфере, содержащей летучие агрессивные соединения, выделяющиеся при старении из органических веществ: при высыхании олифы, масляных лаков и т. п.

2.5. Электрохимическое кадмирование вызывает потерю пластичности сталей вследствие наводороживания. Для деталей из стали с пределом прочности выше 1370 МПа (140 кгс/мм2) допускается кадмирование по специальной технологии.

2.6. Покрытие обладает прочным сцеплением с основным металлом, хорошими антифрикционными 

свойствами, низкой износостойкостью; пластичнее цинкового; выдерживает запрессовку, вытяжку, развальцовку, свинчивание. Окислы кадмия токсичны.

Сварка по кадмиевому покрытию не допускается.

2.7. Микротвердость кадмиевого покрытия - 340-490 МПа (35-50 кгс/мм2)-удельное сопротивление при температуре 18°С - 10,98×10-8 Ом×м.

3. Никелевое покрытие

3.1. Никелевое покрытие является катодным по отношению к стали, алюминиевым и цинковым сплавам. Покрытие применяется для защитной, защитно-декоративной отделки деталей, повышения поверхностной твердости, износостойкости и электропроводности.

Никель не относится к токсичным веществам для человека. Повышенное потребление никеля происходит при загрязнении водоистоков отходами промышленности, в том числе гальваностоками.

3.2. Для повышения декоративности покрытия по никелевому подслою наносят хром толщиной до 1 мкм.

3.3. Увеличение коррозионной стойкости достигается сочетанием нескольких слоев никелевых покрытий с 

различными физико-химическими свойствами. При толщине 24 мкм защитные свойства двухслойного покрытия (без подслоя меди) в два раза, а трехслойного с заполнителем в три раза превосходят защитные свойства блестящих покрытий.

3.4. Удельное сопротивление при температуре 18°С - 7,23-10-8 Ом×м; микротвердость блестящего покрытия - 4420-4900 МПа (450-500 кгс/мм2), полублестящего - 2940-3930 МПа (300-400 кгс/мм2); коэффициент отражения блестящего покрытия - 75%. Допустимая рабочая температура - 650°С.

3.5. Покрытие обеспечивает хорошую растекаемость припоев и получение вакуумплотных соединений при высокотемпературной пайке в различных средах без применения флюсов, а также при аргонодуговой сварке (в последнем случае без медного подслоя). Никелевое покрытие толщиной до 6 мкм может подвергаться точечной сварке.

3.6. Покрытие служит барьерным слоем под покрытия золотом, серебром, сплавом олово-свинец и другими металлами, предотвращая диффузию меди, цинка, железа и других металлов.

3.7. Черное никелевое покрытие применяется для придания деталям специальных оптических и декоративных свойств. Коэффициент отражения черного никелевого покрытия - до 20%.

4. Никелевое химическое покрытие

4.1. Химическое никелевое покрытие, содержащее 3-12% фосфора, обладает лучшими защитными свойствами по сравнению с электрохимическим никелевым покрытием. Покрытие обладает повышенной твердостью и износостойкостью и рекомендуется для деталей, работающих в условиях трения, особенно при отсутствии смазки; применяется для защиты от коррозии, для обеспечения пайки низкотемпературными припоями.

Покрытие обладает повышенной хрупкостью, не рекомендуется гибка и развальцовка деталей с химическим никелевым покрытием.

(Измененная редакция, Изм. №1).

4.2. Покрытие рекомендуется применять преимущественно для сложнопрофилированных деталей.

4.3. Покрытие после термообработки при температуре 400°С приобретает высокую твердость.

4.4. Микротвердость покрытия после термообработки - 6400-11800 МПа (650-1200 кгс/мм2); удельное сопротивление при температуре 18°С - 6,8-10-7 Ом×м.

5. Хромовое покрытие

5.1. Хромовое покрытие является катодным по отношению к стали, алюминиевым и цинковым сплавам, обеспечивает защиту от коррозии и улучшает декоративный вид.

Хром относится к металлам, токсическое воздействие которого на организм человека зависит от степени его окисления. Соединения шестивалентного хрома токсичнее соединений трехвалентного хрома. Высокое содержание солей шестивалентного хрома в сточных водах оказывает токсическое воздействие на микрофлору водоемов.

5.2. Защитно-декоративное покрытие наносят по подслою никеля тонким зеркально-блестящим слоем до 1 мкм. Покрытие толщиной до 0,5 мкм - пористое, при увеличении толщины образуется сетка трещин.

5.3. Электрохимическое хромовое покрытие может быть твердым, пористым, молочным.

5.4. Твердое хромовое покрытие обладает высокой износостойкостью, жаростойкостью, низким коэффициентом трения, плохой смачиваемостью, низкой пластичностью.

Покрытие эффективно работает на трение (при нанесении на твердую основу), хорошо выдерживает равномерно распределенную нагрузку, легко разрушается под действием сосредоточенных ударных нагрузок.

5.5. Молочное хромовое покрытие обладает невысокой твердостью и износостойкостью, небольшой пористостью. Покрытие защищает от коррозии с сохранением декоративного вида.

5.6. Наводороживание сталей сильнее при получении молочного покрытия, чем твердого.

5.7. Для деталей, к которым предъявляют требования защиты от коррозии, декоративной отделки, а также износостойкости, рекомендуется применять комбинированное покрытие, состоящее из молочного и твердого хрома.

5.8. Пористое покрытие повышает износостойкость деталей. Покрытие характеризуется разветвленной сеткой 

трещин (поры расширены дополнительным анодным травлением).

5.9. Черное хромовое покрытие применяется для создания светопоглощающей поверхности; покрытие непрочно при работе на трение. Коэффициент отражения черного громового покрытия - 3-4%; покрытие стабильно в вакууме.

5.10. Нанесение хромовых покрытий на сложнопрофилированные детали затруднено из-за низкой рассеивающей способности хромовых электролитов.

5.11. Для повышения коррозионной стойкости детали с хромовым покрытием могут подвергаться дополнительной обработке (гидрофобизированию, пропитке и т. п.).

При эксплуатации в условиях непосредственного воздействия морской воды для дополнительной защиты хромированных деталей рекомендуется периодическое возобновление смазки.

5.12. Микротвердость твердого хромового покрытия - 7350-10780 МПа (750-1100 кгс/мм2), черного хромового покрытия - 2940-3430 МПа (300- 350 кгс/мм2).

6. Медное покрытие

6.1. Медное покрытие является катодным по отношению к стали, алюминиевым, магниевым и цинковым сплавам. Покрытие применяется в качестве технологического подслоя для уменьшения пористости и повышения сцепления других покрытий. Для защиты от коррозии как самостоятельное покрытие не рекомендуется из-за низкой коррозионной стойкости.

Медь достаточно токсична для обитателей водной среды. При концентрации 0,001 мг/см3 соли меди тормозят развитие многих водных организмов, а при концентрации 0,004 мг/см3 оказывают токсическое действие на них. Токсические дозы солей меди приводят к острому, но излечимому отравлению человека.

6.2. Медное покрытие обладает высокой электро- и теплопроводностью, пластичностью, выдерживает глубокую вытяжку, развальцовку, хорошо полируется, облегчает приработку, притирку и свинчивание; в свежеосажденном состоянии хорошо паяется. С низкотемпературными припоями образует интерметаллические соединения резко ухудшающие паяемость и прочность паяного соединения 

6.3. Допустимая рабочая температура покрытия - 300°С; микротвердость покрытия - 590-1470 МПа (60-150 кгс/мм2); удельное сопротивление при температуре 18°С - 1,68×10-8 Ом×м.

7. Покрытие сплавом медь - олово

7.1. Покрытие высокооловянистым сплавом М-О(60) по отношению к стали является катодным, рекомендуется для повышения износостойкости электроконтактных деталей, а также для обеспечения пайки. Покрытие допускается применять в качестве защитно-декоративного.

7.2, Покрытие стойко к воздействию щелочей, слабых органических кислот и сернистых соединений.

7.3. Коэффициент отражения покрытия 60-65%, сопротивление износу - в 4 раза больше, чем у серебряного покрытия; твердость в 5-6 раз больше твердости медного покрытия.

7.4. Покрытие хорошо паяется низкотемпературными припоями с применением канифольных флюсов.

7.5. Покрытие не подвержено росту нитевидных кристаллов и переходу в порошковую модификацию при низких температурах.

7.6. Микротвердость покрытия - 5390-6370 МПа (550-650 кгс/мм2)

8. Оловянное покрытие

8.1. Оловянное покрытие в атмосферных условиях является катодным по отношению к стали, анодным - во многих органических средах, а также по отношению к меди и ее сплавам, содержащим более 50% меди. Покрытие рекомендуется для обеспечения пайки.

Олово, попадающее в организм человека с продуктами питания и питьевой водой, достаточно быстро выводится из организма. В организме олово осаждается в почках, печени, костях и в небольшой степени в мягких тканях. Наибольшее количество откладывается в скелете.

8.2. Оловянное покрытие стойко к действию серосодержащих соединений и рекомендуется для деталей, контактирующих со всеми видами пластмасс и резин.

8.3. Оловянное покрытие обладает хорошим сцеплением с основным металлом, эластичностью, выдерживает изгиб, вытяжку, развальцовку, штамповку, прессовую посадку, хорошо сохраняется при свинчивании. 

Свежеосажденное оловянное покрытие хорошо паяется. Блестящее покрытие сохраняет способность к пайке более длительное время, чем матовое.

8.4. Для матового оловянного покрытия характерна значительная пористость. Пористость покрытий малой толщины (до 6 мкм) может быть снижена оплавлением покрытия или нанесением блестящего покрытия.

8.5. На поверхности покрытия в процессе хранения образуются нитевидные токопроводящие кристаллы («иглы»).

8.6. При эксплуатации оловянных покрытий при температуре ниже плюс 13°С возможно разрушение покрытия вследствие перехода компактного белого олова (b-Sn) в порошкообразное серое олово (a-Sn) («оловянная чума»).

8.7. Микротвердость покрытия - 118-198 МПа (12-20 кгс/мм2); удельное сопротивление при 18°С - 11,5×10-8 Ом×м. Допустимая рабочая температура покрытия - 200°С.

9. Покрытие сплавом олово - никель

9.1. Покрытие сплавом О-Н(65) является катодным по отношению к стали; рекомендуется как защитное для 

деталей, подлежащих пайке; для обеспечения поверхностной твердости и износостойкости.

9.2. Покрытие обладает высокой коррозионной стойкостью: стойко в условиях повышенной влажности и среде, содержащей сернистые соединения.

9.3. Покрытие хорошо полируется, выдерживает запрессовку в пластмассы; вследствие высокой хрупкости не рекомендуется для деталей, подвергаемых развальцовке и ударным нагрузкам.

9.4. Микротвердость покрытия 4900-5880 МПа (500-600 кгс/мм2).

Допустимая рабочая температура - 300-350°С.

10. Покрытие сплавом олово-висмут

10.1. Покрытие сплавом О-Ви-(99,8) в атмосферных условиях является катодным по отношению к стали, анодным по отношению к меди и ее сплавам, содержащим более 50% меди; рекомендуется как защитное для деталей, подлежащих пайке.

10.2. Коррозионная стойкость и склонность к иглообразованию такие же, как у оловянного покрытия.

10.3. Покрытие хорошо выдерживает развальцовку, штамповку, прессовые посадки, сохраняются при свинчивании.

11. Покрытие сплавом олово-свинец

11.1. Покрытие сплавом О-С(60) в атмосферных условиях является катодным по отношению к стали, анодным - по отношению к меди и ее сплавам.

Покрытие обеспечивает паяемость низкотемпературными припоями.

Свинец относится к микроэлементам, приводящим к патологии органов и крови человека. В течение жизни свинец накапливается в костях. Повышенная абсорбция свинца из воды или пищи наблюдается у детей.

11.2. В условиях повышенной температуры и влажности коррозионная стойкость ниже, чем у оловянного покрытия.

11.3. Покрытие пластично, обладает низким электрическим сопротивлением, паяется с применением неактивированных канифольных флюсов.

11.4. Оплавленное покрытие имеет лучшие эксплуатационные характеристики.

11.5. Оплавленное покрытие не подвержено иглообразованию. На цинкосодержащих сплавах покрытие должно применяться по подслою никеля, предотвращающего диффузию цинка в покрытие и иглообразование.

(Измененная редакция, Изм. № 1, 2).

11.6. Паяемость покрытия после опрессовки в полимерные материалы, при необходимости, восстанавливают горячим способом с неактивированным канифольным флюсом.

12. Золотое покрытие

12.1. Золотое покрытие является катодным по отношению к покрываемым металлам и защищает их механически; рекомендуется для обеспечения низкого и стабильного переходного электрического сопротивления контактирующих поверхностей, улучшения поверхностной электропроводности.

12.2. Покрытие обладает высокой тепло- и электропроводностью, химической стойкостью, в том числе в атмосфере с повышенной влажностью и серосодержащих средах.

12.3. Групповые контакты с покрытиями золотом и сплавами золотом, имеющие обычно малые зазоры между цепями, для условий эксплуатации 4-8 следует герметизировать или помещать в пылебрызгозащитные устройства.

(Измененная редакция, Изм. № 2).

12.4. Покрытие из цианистых электролитов, работающее в контактных устройствах, склонно к возрастанию адгезии трущихся поверхностей в процессе работы. Покрытие из кислых электролитов не обладает таким дефектом.

12.5. При осаждении золотого покрытия на латунь рекомендуется подслой никеля, который предотвращает диффузию цинка на поверхность золотых покрытий из основного металла.

Никелевый подслой под покрытие золотом и сплавами золотом следует наносить из электролитов, обеспечивающих получение покрытия с низкими внутренними напряжениями.

(Измененная редакция, Изм. № 1).

12.6. С оловянно-свинцовыми припоями золотое покрытие образует хрупкие интерметаллические 

соединения, снижающие механическую прочность паяного соединения.

12.7. Микротвердость покрытия - 392-980 МПа (40-100 кгс/мм2); удельное сопротивление при температуре 18°С- 2,2×10-8 Ом×м; внутренние напряжения достигают 59-147 МПа (6-15 кгс/мм2).

13. Покрытие сплавом золото-никель

13.1. Покрытия сплавами Зл-Н(99,5-99,9), Зл-Н(98,5-99,5), Зл-Н(93,0-95,0) являются катодными по отношению к покрываемым металлам и защищают их механически. Коррозионная стойкость сплава золото-никель и функциональное назначение такие же, как золотого покрытия.

(Измененная редакция, Изм. № 1).

13.2. Покрытие характеризуется высокой электро- и теплопроводностью, высокой твердостью, повышенным сопротивлением износу, отсутствием склонности к свариванию, невысокими внутренними напряжениями; отличается химической стойкостью в различных агрессивных средах и сохраняет стабильными во времени свои характеристики.

13.3. Подслой никеля создает благоприятные условия работы покрытий на трение, предотвращает диффузию основного металла при температурах до 350°С, способствует стабильности контактного сопротивления.

13.4. С оловянно-свинцовыми припоями покрытие образует хрупкие интерметаллические соединения, снижающие механическую прочность паяного соединения.

14. Серебряное покрытие

14.1. Серебряное покрытие является катодным по отношению к покрываемым металлам; рекомендуется для обеспечения низкого контактного сопротивления, для улучшения поверхностной электропроводности.

14.2. Покрытие характеризуется высокой электро- и теплопроводностью, пластичностью, отражательной способностью; низкими твердостью, сопротивлением механическому износу и внутренними напряжениями; склонностью к свариванию.

Покрытие хорошо выдерживает гибку и развальцовку, плохо переносит опрессовку в полимерные материалы.

Покрытие подвержено миграции по поверхности диэлектрика под действием разности потенциалов 

Блескообразователи в электролитах для нанесения покрытия способны отрицательно влиять на электропроводность покрытия.

(Измененная редакция, Изм. № 2).

14.3. Не допускается применять серебряное покрытие в качестве подслоя под золото из-за диффузии серебра через золото с образованием поверхностных непроводящих пленок*.

* При применении изделий с электроконтактами с золотым покрытием по подслою серебра возможна нестабильность переходного сопротивления вплоть до отказа из-за диффузии серебра через золото.

(Измененная редакция, Изм. № 3).

14.4. Под воздействием соединений хлора, аммиака, серосодержащих, фенолсодержащих и т. п. веществ на поверхности серебряных и серебросодержащих покрытий образуется пленка, способствующая повышению переходного сопротивления покрытия и затрудняющая его пайку.

14.5. Микротвердость покрытия - 883-1370 МПа (90-140 кгс/мм2), которая в течение времени может уменьшаться до 

558 МПа (60 кгс/мм2); удельное сопротивление при температуре 18°С - 1,6×10-8 Ом×м.

15. Палладиевое покрытие

15.1. Палладиевое покрытие является катодным по отношению к покрываемым металлам, обладает высокой стойкостью в атмосферных условиях и при воздействии сернистых соединений.

15.2. Покрытие рекомендуется применять для снижения переходного сопротивления контактирующих поверхностей, повышения их поверхностной твердости и износостойкости, при необходимости сохранения постоянства электрического сопротивления.

15.3. Покрытие обладает высокой износостойкостью и хорошей электропроводностью, стабильным во времени контактным сопротивлением; коэффициент отражения - 60-70%. Электропроводность почти в семь раз ниже, чем у серебряного покрытия, но стабильна во времени до температуры 300°С.

15.4. Покрытие не рекомендуется применять в контакте с органическими материалами и резинами, а также в 

замкнутом пространстве при наличии указанных материалов.

Покрытие не допускается применять в среде водорода.

15.5. При толщине более 9 мкм в покрытии возникают микротрещины, что снижает его функциональные и защитные свойства.

15.6. Микротвердость покрытия - 1960-2450 МПа (200-250 кгс/мм2); удельное сопротивление при температуре 18°С - 10,8×10-8 Ом×м; внутренние напряжения достигают 686 МПа (70 кгс/мм2).

16. Родиевое покрытие

16.1. Родиевое покрытие является катодным по отношению к покрываемым металлам.

16.2. Покрытие рекомендуется применять для обеспечения стабильных электрических параметров деталей контактных устройств, повышения отражательной способности поверхности.

16.3. Покрытие обладает высокими износостойкостью, электропроводностью, отражательной способностью. Коэффициент отражения - 76-81: %, 

Покрытие не подвержено свариванию, стойко в большинстве коррозионно-активных сред в том числе в сероводороде, не окисляется до температуры 600°С.

16.4. Покрытие при толщине 1,0 мкм практически не имеет пор, при толщине более 3 мкм склонно к образованию микротрещин.

16.5. Микротвердость покрытия - 3920-7840 МПа (400-800 кгс/мм2); удельное сопротивление при температуре 18°С - 4,5×10-8 Ом×м; внутренние напряжения достигают 1670 МПа (170 кгс/мм2).